Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Rafal Kruszynski,<sup>a</sup>\* Tadeusz J. Bartczak<sup>a</sup> and Elżbieta Mikiciuk-Olasik<sup>b</sup>

<sup>a</sup>Institute of General and Ecological Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland, and <sup>b</sup>Department of Chemical Technology of Drugs, Medical University of Łódź, ul. Muszyńskiego 1, 90-145 Łódź, Poland

Correspondence e-mail: kruszyna@ck-sg.p.lodz.pl

#### Key indicators

Single-crystal X-ray study T = 293 KMean  $\sigma(C-C) = 0.004 \text{ Å}$  R factor = 0.048 wR factor = 0.175 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved All interatomic distances in the title compound,  $C_{28}H_{34}N_4O_4$ , are normal. The (4-ethoxyphenyl)amino parts of the side branches are almost ideally planar. The overall arrangement of the side branches seems to be imposed by hydrogen bonds. The substituents are stabilized by interbranch  $N-H\cdots O$  hydrogen bonds. The structure of the title compound is assembled by intermolecular  $N-H\cdots O$  hydrogen bonds, forming a two-dimensional framework.

Received 12 September 2001 Accepted 18 September 2001 Online 29 September 2001

### Comment

The present work is a continuation of our previous studies on derivatives of 2,3,4,5,6,7-hexahydro-1*H*-1,4,7-benzotriazone-2,5-dione. Upon introduction of pharmacophoric substituents for a desired activity into those systems, it is expected that derivatives will be obtained exhibiting numerous favourable properties, such as analeptic activity or possible anticancer and anti-HIV activities (Bartczak *et al.*, 1995). Within this area of research, preliminary results of the crystal structure of the title compound have been previously published [Mikiciuk–Olasik *et al.*, 1993; Cambridge Structural Database (CSD; Allen and Kennard, 1993) refcode: WEWPIX], but the complete structure was never determined. Thus, we now present the full structure determination of N,N'-bis-[(4-ethoxyphenyl)aminoacetyl]-4,5-dimethyl-*o*-phenylenediamine.

A perspective view of the title compound, (III), together with the atom-numbering scheme is shown in Fig. 1. All interatomic distances can be considered normal. Atoms C7, C8 and C30 show signs of disorder (particularly high values of  $U_{eq}$ ), but all attempts to model the disorder failed. It can be suggested that the disorder is dynamical in character. All atoms of the (4-ethoxyphenyl)amino parts of the respective side branches are almost coplanar. The maximum deviation in the N11 branch is 0.058 (2) Å for O12 (branch A hereafter) and the maximum deviation in the N21 branch is 0.046 (2) Å for O22 (branch B hereafter). The next C atom of each branch, Cx2, deviates by 0.740 (2) and 0.425 (2) Å from the above planes, respectively (where x = 1 for the atoms of the branch A and x = 2 for the atoms of the branch *B*). These planes make a dihedral angle of 27.37 (5)°. The main difference between branches A and B is the conformation of the chain consisting of Nx1, Cx1, Cx2 and Nx2 (best described by the torsion angles, see Table 1 for details). The overall arrangement of the side branches seems to be imposed partly by the N12-H12···O11 hydrogen bond and the C5-H5···O21 weak hydrogen bond (Desiraju & Steiner, 1999) (branch A), and by the N21-H21···N22 hydrogen bond (branch B); for details, see Table 2. The substituents are stabilized by an interbranch N21-H21···O11 hydrogen bond (Jeffrey & Saenger, 1994).

The N21 atom acts as a donor for two intramolecular hydrogen bonds and these hydrogen bonds are created via the same H atom (H21). The structure of the title compound is assembled by intermolecular N-H···O hydrogen bonds, to form a two-dimensional framework (Fig. 2 and Table 2). There are no unusual intermolecular short contacts, except for the hydrogen bonds described in Table 2.





# **Experimental**

Compound (III) was prepared according to the method depicted in the above Scheme. A mixture 0.015 mol (4.00 g) of (I) and 0.030 mol (4.20 g) of *p*-phenetidine in 600 ml of anhydrous ethanol in the presence of anhydrous sodium carbonate (0.075 mol, 8.00 g) was heated under reflux for 10 h (Mikiciuk-Olasik et al., 1993, 1994). The mixture was filtered and the solvent was distilled off. Compounds (II), (III) and a small amount of (IV) were isolated by fractional crystallization of the solid residue. Data for (III): yield 20%; m.p. 454.2 K. Elemental analyis (calculated/found): C 68.55/68.53%, H 6.98/7.09%, N 11.42/11.24%. IR (cm<sup>-1</sup>): 3200, 1590 (NH); 1670, 1520 (NH–CO). <sup>1</sup>H NMR (in DMSO/TMS, chemical shifts in p.p.m.): 1.4 (t, 6H,





The molecular structure of title compound (III). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.



### Figure 2

Molecular packing of (III) showing intermolecular hydrogen bonds creating a two-dimensional net structure. Carbon-bonded H atoms have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.

2CH<sub>3</sub>CH<sub>2</sub>, J = 7 Hz), 2.35 (s, 6H, 2CH<sub>3</sub>Ph), 3.7 (d, 4H, 2CH<sub>2</sub>NH, J = 6 Hz), 4.05 (q, 4H, 2CH<sub>2</sub>CH<sub>3</sub>, J = 7 Hz), 5.65 (t, 2H, 2NHCH<sub>2</sub>, J = 6 Hz) 6.9 (m, 10H<sub>ar</sub>), 9.6 (s, 2H, NHCO).

Crystal data

3352 reflections with  $I > 2\sigma(I)$ 

| $C_{28}H_{34}N_4O_4$ $M_r = 490.59$ Monoclinic, $P_{21}/c$ $a = 14.6542 (11) \text{ Å}$ $b = 14.3344 (14) \text{ Å}$ $c = 12.7220 (12) \text{ Å}$ $\beta = 95.606 (9)^{\circ}$ $V = 2659.6 (4) \text{ Å}^3$ | $D_x = 1.225 \text{ Mg m}^{-3}$ Cu K\alpha radiation<br>Cell parameters from 99<br>reflections<br>$\theta = 5-60^{\circ}$<br>$\mu = 0.67 \text{ mm}^{-1}$<br>T = 293 (2) K<br>Sphere, colourless |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z = 4                                                                                                                                                                                                       | 0.46 mm (radius)                                                                                                                                                                                 |
| Data collection                                                                                                                                                                                             |                                                                                                                                                                                                  |
| Kuma KM-4 diffractometer                                                                                                                                                                                    | $R_{\rm int} = 0.040$                                                                                                                                                                            |
| $\omega$ –2 $\theta$ scans                                                                                                                                                                                  | $\theta_{\rm max} = 80.8^{\circ}$                                                                                                                                                                |
| Absorption correction: numerical                                                                                                                                                                            | $h = -18 \rightarrow 18$                                                                                                                                                                         |
| X-RED (Stoe & Cie, 1999)                                                                                                                                                                                    | $k = -18 \rightarrow 0$                                                                                                                                                                          |
| $T_{\min} = 0.713, \ T_{\max} = 0.789$                                                                                                                                                                      | $l = -16 \rightarrow 0$                                                                                                                                                                          |
| 6127 measured reflections                                                                                                                                                                                   | 2 standard reflections                                                                                                                                                                           |
| 5857 independent reflections                                                                                                                                                                                | every 100 reflections                                                                                                                                                                            |

every 100 reflections intensity decay: -3.1% Refinement

| Refinement on $F^2$             | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.048$ | independent and constrained                                |
| $wR(F^2) = 0.175$               | refinement                                                 |
| S = 1.05                        | $w = 1/[\sigma^2(F_o^2) + (0.1016P)^2]$                    |
| 5857 reflections                | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 345 parameters                  | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
|                                 | $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$  |
|                                 | $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

Table 1

Selected torsion angles (°).

| C6-C1-N11-C11   | 57.6 (3)    | N21-C21-C22-N22 | 5.8 (3)    |
|-----------------|-------------|-----------------|------------|
| C1-N11-C11-C12  | 177.75 (18) | C21-C22-N22-C23 | 98.6 (3)   |
| N11-C11-C12-N12 | -158.31(18) | C22-N22-C23-C24 | -18.6(3)   |
| C11-C12-N12-C13 | -149.63(19) | C15-C16-O12-C19 | 172.0 (3)  |
| C12-N12-C13-C14 | -34.7 (3)   | C16-O12-C19-C20 | -176.3(3)  |
| C1-C6-N21-C21   | 136.3 (2)   | C25-C26-O22-C29 | -6.2(4)    |
| C6-N21-C21-C22  | -179.5 (2)  | C26-O22-C29-C30 | -179.3 (3) |

Table 2

Hydrogen-bonding geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdots A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------|----------------|--------------|--------------|------------------|
| N11-H11···O21 <sup>i</sup>  | 0.91 (3)       | 1.89 (3)     | 2.783 (2)    | 166 (2)          |
| N12-H12···O11               | 0.91 (3)       | 2.13 (3)     | 2.675 (2)    | 118 (2)          |
| $N22-H22\cdots O11^{ii}$    | 0.85(3)        | 2.27 (3)     | 3.025 (2)    | 148 (3)          |
| N21-H21···N22               | 0.92(3)        | 2.12 (3)     | 2.674 (3)    | 118 (2)          |
| N21-H21···O11               | 0.92 (3)       | 2.15 (3)     | 2.819 (2)    | 129 (2)          |
| $C5-H5\cdots O21$           | 0.93           | 2.60         | 2.974 (3)    | 105              |

Symmetry codes: (i)  $x, \frac{1}{2} - y, z - \frac{1}{2}$ ; (ii) 2 - x, -y, 1 - z.

Because the diffraction data were relatively weak, there is a large number of reflections with small intensities; these were flagged as unobserved. This affects the fraction of unique observed reflections (out to  $\theta = 79^{\circ}$ ) which is equal to 96%.

All H atoms, except those bonded to N atoms, were placed at calculated positions. The H atoms bonded to N atoms were located in difference Fourier syntheses, calculated after four cycles of anistropic refinement. All H atoms were treated as riding on the parent C atom. The methyl groups were allowed to rotate about their local threefold axis.

Data collection: *KM*-4 *Software* (Kuma, 1993); cell refinement: *KM*-4 *Software*; data reduction: *DATAPROC* (Gałdecki *et al.*, 1998); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990*a*); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL/PC* (Sheldrick, 1990*b*) and *ORTEP*-3 (Farrugia, 1997).

This work was supported financially by statutory funds allocated by the State Committee for Scientific Research, Warsaw, Poland, to the Institute of General and Ecological Chemistry, Technical University of Łódź.

#### References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Bartczak, T. J., Kajkowski, T., Trzebinski, P., Mikiciuk-Olasik, E. & Kotelko, B. (1995). *Heteroatom Chem.* 6, 495–498.
- Desiraju, G. R., Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gałdecki, Z., Kowalski, A. & Uszynski, I. (1998). *DATAPROC*. Version 10.0.4. Kuma Diffraction, Wrocław, Poland.
- Jeffrey, G. A. & Saenger, W. (1994). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
- Kuma (1993). KM-4 Software. Kuma Diffraction, Wrocław, Poland.
- Mikiciuk-Olasik, E., Kajkowski, T. & Bartczak, T. J. (1993). Pharmazie, 48, 523–525.
- Mikiciuk-Olasik, E., Trzebinski, P., Nowak, R. & Kotelko B. (1994). Acta Pol. Pharm. Drug Res. 51, 231–233.
- Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990b). SHELXTL/PC Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1999). X-RED. Version 1.18. Stoe & Cie GmbH, Darmstadt, Germany.